iit XoLab

Emerging risks in industry 4.0: innovative approaches for safety and security Rome, Italy, 25 November 2019

Jesús Ortiz

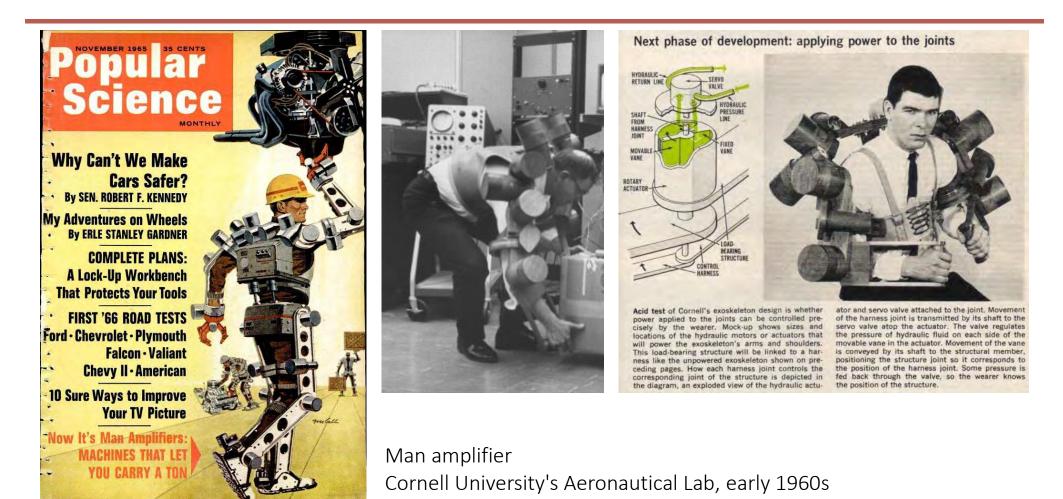
XoLab – Exoskeletons Group Department of Advanced Robotics Istituto Italiano di Tecnologia

Developing exoskeletons for the industry of today

XoLab

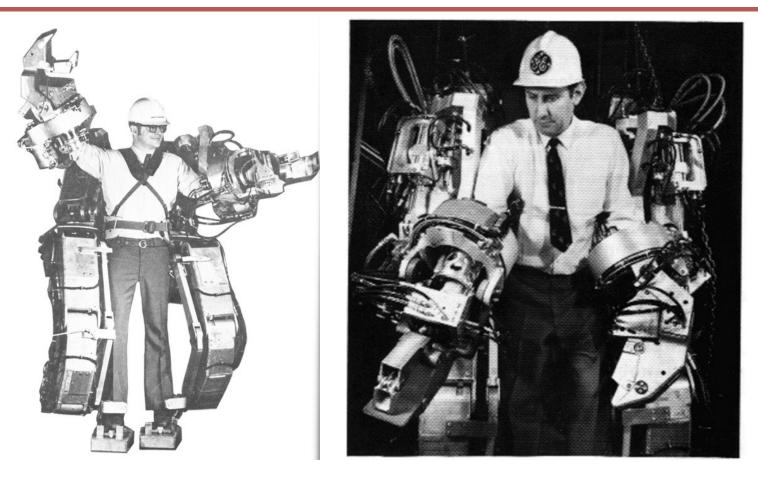
Stefanos Ioakeimidis Jorge Fernández Stefano Toxiri Tommaso Poliero

Francesca Bonavita Christian Di Natali Maria Lazzaroni



Jesús Ortiz Daegeun Park Jorge Crespo Matteo Sposito

Erfan Shojaei Olmo Moreno

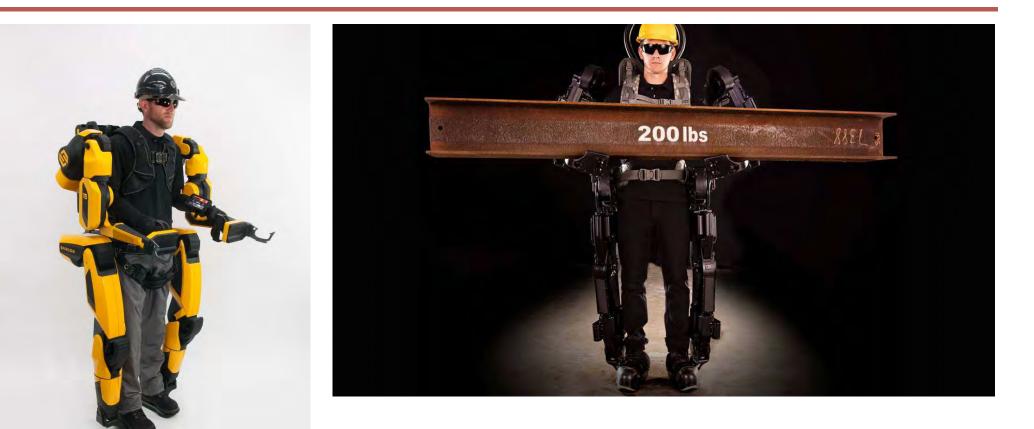


Exoskeletons - First concepts

Exoskeletons - First concepts

Hardiman, General Electric, 1965

Exoskeletons - Military



Sarcos, XOS 2, 2010

Exoskeletons - Construction

Sarcos, Guardian XO, 2019

Exoskeletons - Rehabilitation

Ekso GT Ekso Bionics, 2016

ReWalk Personal 6.0 ReWalk, 2016

REX REX Bionics, 2016

PhoeniX SuiX, 2016

Exoskeletons - Characteristics

Full powered exoskeletons (rehabilitation, military, augmentation, ...)

- Provide full support/power
- Follow body kinematics
- Actuate all/most of the joints
- High energy requirements (battery)

Exoskeletons - Characteristics

Passive exoskeletons (prevention)

- Provide full support/power \rightarrow Provide only partial support
- Follow body kinematics → Non anthropomorphic design
- Actuate all/most of the joints \rightarrow Actuate only a few joints
- High energy requirements (battery) \rightarrow Passive actuation

Exoskeletons - Passive

Laevo V2 Laevo, 2019

LegX SuitX, 2019

MATE Comau, 2019

Exoskeleton design

Full powered exoskeletons	<u>Passive exoskeletons</u>
High level of assistance	Low level of assistance
Adaptable	Task specific
High energy requirements	No energy required
Heavy	Lightweight
Bulky	Slim design

Exoskeleton design

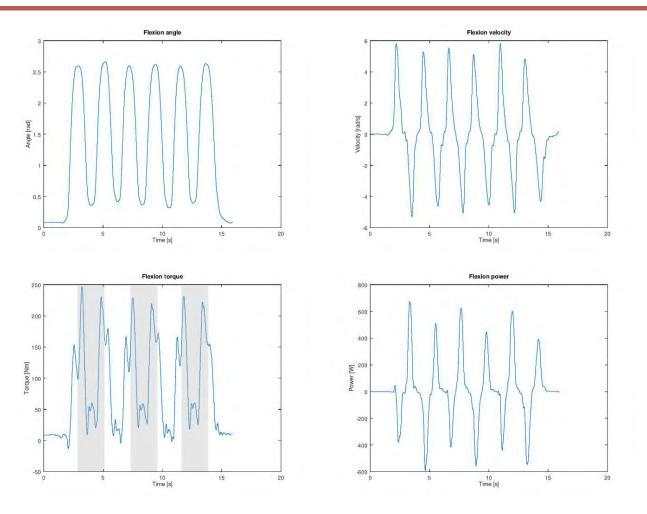
Full powered exoskeletons

High level of assistance

Adaptable

High energy requirements

Heavy


Bulky

Passive exoskeletons

Low level of assistance Task specific No energy required Lightweight Slim design

Emerging risks in industry 4.0: innovative approaches for safety and security Rome, Italy, 25 November 2019

13

Requirements:

- Maximum velocity = ~6 rad/s
- Maximum torque = ~250 Nm
- Maximum power > 600 W
- Cycle energy (positive power) = ~200 J
- Full freedom of movement
 (6 DoF per segment)

Actuation selection (1 motor per side):

- Motor power = 600 W
- Motor speed = 2080 rpm
- Motor torque = 1.56 Nm
- Gear ratio = 1:80 (1:35)
- Output speed = 2.7 rad/s (6.2 rad/s)
- Output torque = 124.8 Nm (54.6 Nm)
- Motor weight = 1 Kg
- Gears weight = 1.5 Kg
- Unit weight = 3 Kg

Battery selection:

- Autonomy = 8 hours
- Energy storage = 10 AH
- Energy density = 2.5 AH/Kg
- Weight = 4 Kg

System weight:

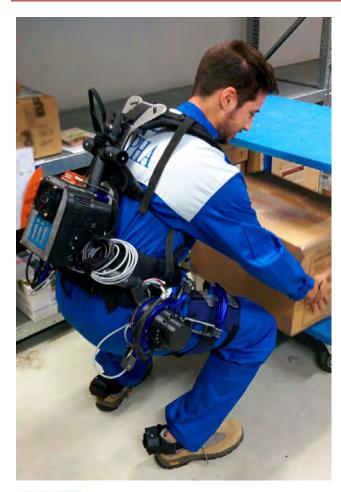
- Actuation = 6 Kg
- Battery = 4 Kg
- Structure = 10 Kg
 - Others = 4 Kg (electronics, CPU, cables, sensors, garment, attachments, ...)
- Total = 24 Kg!

Robo-Mate - First prototype

Problems

- Too much weight (> 20 Kg)
- Too complex mechanism (12 passive joints)
- Too complex construction
- Bad weight distribution (waist)
- Too slow actuation (not for walking)

Requirements review

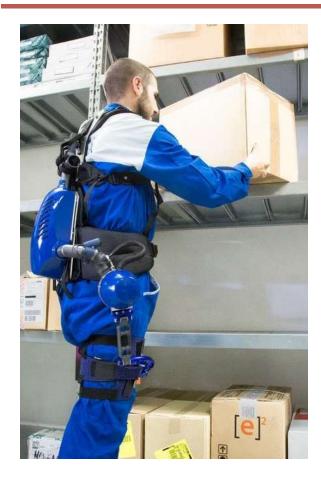


Requirements:

- Maximum velocity = ~6 rad/s > 6 rad/s
- Maximum torque = ~250 Nm ~60 Nm
- Maximum power > 600 W ~200 W
- Cycle energy (positive power) = ~50 J
- Full freedom of movement (6 DoF per segment)

Robo-Mate - Final prototype

Improvements


- Lighter
- Simpler mechanism
- Simpler construction
- Good weight distribution
- Good actuation speed (walking OK, but not running or jumping)
- Reduction of back muscles activity by ~30%

Problems

Still too heavy

Beyond Robo-Mate

Improvements

- Better integration
- Reduced further weight (no parallel spring mechanism)
- Reduced encumbrance

Problems

• Still too heavy (11 Kg)

Sistemi Cibernetici Collaborativi

INCIL

Improvements

- Actuation + electronics
- Performance
- Weight (6 Kg)
- Comfort
- Battery support (+1 Kg)

Requirements Vs. Characteristics

Characteristics Usability Comfort **Attachments** Structure and actuator Total weight Attachments and kinematics Weight distribution Actuation/low-level control Transparency **High-level control** Intuitiveness

Requirements Vs. Characteristics

Industrial compatibility	Characteristics
Standards	Certified components Comformity tests
Task	Kinematics, actuation, control and battery
Space requirements	Actuation and structure shape

Example 1

Manufacturing

- Machines in series
- Lifting 10-15 Kg
- Carrying short distance
- Body rotation
- Walking without load

Example 1 - Characteristics

Manufacturing

- Transparency
- Weight
- Autonomy

Example 2

Warehouse

- Picking (pulling and lifting) 5-15 Kg
- <u>Limited working space</u> (inside order-pick)

Example 2 - Characteristics

Warehouse

- Dimension limitations
- Modified control system to allow pulling
- No autonomy requirements
- Weight less important

Example 3

Outdoor maintenance/construction

- Lifting
- Postural support
- Walking
- <u>Environment conditions</u>

Example 3 - Characteristics

Outdoor maintenance/construction

- Freedom of movement
- Transparency
- Weight
- Autonomy
- Protection to dust and rain (IP67)

Conclusions

- Difficult to design a "one size fits all" exoskeleton
- Basic system with modifications
- Understand the task
- Focus on the requirements
- Test/demo as soon as possible with operators

iit XoLab

Emerging risks in industry 4.0: innovative approaches for safety and security Rome, Italy, 25 November 2019

Developing exoskeletons for the industry of today

Jesús Ortiz

jesus.ortiz@iit.it